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Use of material coordinates in porous media solute and water flow
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Abstract

Material coordinates relating to water flow in saturated swelling systems and to solute movement during non-steady water flow in
unsaturated porous materials often simplify descriptions of these processes. Furthermore, they may be formulated similarly and result in
similar mathematical forms for the flow equations. The analysis may be extended to solute transport during non-steady flow of water in
a deforming system. These space-like coordinates are simply defined and measured. Their use ensures material balance for all entities of
concern and, for some important situations, results in a non-linear diffusion equation that may be solved for many practically important
initial and boundary conditions. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Material coordinates often simplify descriptions of water
flow and solute transport in porous media. Thus, a coordi-
nate based on the solid matrix may help analyze processes
such as filtration and sedimentation because it removes the
need to deal explicitly with the movement of water advected
with the solid. The analysis then deals only with transfer of
water relative to the matrix and a non-linear Fokker–Planck
equation results where the water potential and the hydraulic
conductivity are well-defined functions of the water content.
This equation can often be simplified to a non-linear dif-
fusion equation for which solutions are available for many
practically important initial and boundary conditions [1–7].

Solute transfer during non-steady water flow in an unsatu-
rated non-swelling porous media may be described similarly
using a space-like coordinate based on the distribution and
movement of the water. Transfer of solute is then described
by a non-linear diffusion equation also [8,9].

Smiles et al. [10] examined a yet more complicated situ-
ation where the soluble salt, the clay and the water are all
in motion making description of flow of any component in
Eulerian space difficult. This situation is important in re-
lation, for example, to the way retention pond liners react
chemically and physically to effluents [11] and experiments
such as those of [10] offer useful ways to examine these
processes.

This paper shows that the derivation of material coordi-
nates in each of these systems follows a similar argument,
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that the coordinate systems simplify material accounting and
that the resulting equations form a common class for which
solutions are available for many practically important initial
and boundary conditions. It relies on more detailed argu-
ment presented in [12].

2. Formulation of flow equations

2.1. Water flow in swelling systems

During 1-dimensional, non-steady flow in a clay/water
system the solid and liquid satisfy the material balance
Eqs. (1) and (2):(
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wherez andt are distance and time, respectively,θc andθw
are volume fractions of solid and liquid,ϑ(=θw/θc) is the
moisture ratio andFc (m s−1) andFw (m s−1) are the volume
fluxes of the solid and liquid.Fw is given by the equation:

Fw = u+ ϑFc (3)

in which u (m s−1) is the Darcy flux of water relative to the
solid [13] andϑFc is the flux of water advected with the
moving solid. Eqs. (1) and (3) give rise [14] to(
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)
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Nomenclature

Cs solute concentration expressed per unit
volume of solution, molc m−3

Dm (ϑ) water diffusivity in material space, m2 s−1

Ds effective diffusion coefficient of solute in
porous material, m2 s−1

f diffusive flux of solute relative to the water,
molc m2 s−1

Fc volume flux of solid in physical
space, m s−1

Fs flux of solute in physical space,
molc m−2 s−1

Fw volume flux of water in physical
space, m s−1

j material coordinate based on the distribution
of the water, m

J Boltzmann variable,j/t1/2, m s−1/2

k(θ ) hydraulic conductivity in physical
space, m s−1

km(ϑ) hydraulic conductivity in material
space, m s−1

m material coordinate based on the solid
distribution, m

M Boltzmann variable,m/t1/2, m s−1/2

p material coordinate based on the distribution
of water inm-space, m

P Boltzmann variable,p/t1/2, m s−1/2

S sorptivity, m s−1/2

t time, s
u Darcy flux of water relative to the

solid, m s−1

z physical distance and gravitational
potential of the water, m

Z Boltzmann variable,zt−1/2, m s−1/2

Greek letters
θw volume fraction of water
θc volume fraction of solid
Φ total potential of the water, m
ψ capillary potential (or effective stress), m
Ω overburden potential, m
ϑ moisture ratio

Subscripts
i initial value
o value atx=0

with m(z, t) a material coordinate with dimensions of length
[L] and units (m) defined by

dm =
(
∂m

∂z

)
dz+

(
∂m

∂t

)
dt = θcdz− Fcdt (5)

m satisfies the material balance Eq. (1) for the solid and is
evaluated by integrating Eq. (5) for appropriate conditions.

Eq. (4) was explicitly stated by Terzaghi [12]; it arises, im-
plicitly or explicitly in [2–4,6]. The formal definition ofm
in Eq. (5) is unusual:m appears generally to be defined, in-
completely, in terms of the first term on the right-hand side
of Eq. (5).

For 1-dimensional vertical flow in swelling systems,u is
given by

u = −k (θw) ∂Φ
∂z

(6)

in whichk(θw) is the water content dependent hydraulic con-
ductivity (permeability divided by kinematic viscosity (m2

s−1)) and∂Φ/∂z is the space gradient of the total potential
of the water,Φ.

Φ = ψ + z+Ω (7)

with ψ the capillary potential (minus the effective stress),z
the gravitational potential andΩ the overburden potential.
If the potential components are defined per unit weight of
water they take dimensionsL and units m of water, so the hy-
draulic conductivity has dimensionsLT−1 and units m s−1.
We assume the effects of gravity to be relatively unimpor-
tant for illustrative purposes whence Darcy’s law becomes

u = −k (θw)
∂ψ

∂z
= −km (ϑ) ∂ψ

∂m
= −Dm (ϑ) ∂ϑ

∂m
(8)

In Eq. (8),km (ϑ) is the hydraulic conductivity inm-space
andDm (ϑ) (m2 s−1) is the water diffusivity which may be
defined only whereψ(ϑ) is single valued.

km (ϑ) = θck (θw) and Dm (ϑ) = km (ϑ)
dψ

dϑ
(9)

Substitution foru, using Eq. (8), in Eq. (4) results in(
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2.2. Non-reactive solute flow in non-swelling systems

Transfer of non-reactive solute during unsteady water flow
in unsaturated non-swelling soil is approached in exactly
the same way as the preceding example [8]. The material
balance equations analogous to Eqs. (1) and (2) are(
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Eq. (11) is, in fact, identical with Eq. (2) but we present it in
this way to preserve the analogy between systems one and
two. In Eq. (12),Fs is the sum of the flux of solute with (f)
and relative to (Csθw) the moving water (molc m−2 s−1),
andCs (molc m−3) is the solution concentration. That is (cf.
Eq. (3))

Fs = f + CsFw (13)



D.E. Smiles / Chemical Engineering Journal 80 (2000) 215–220 217

and the analogues of Eq. (4) and Eq. (5) are(
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In these equations,j(z,t) is a material coordinate with units
(m). The j-coordinate satisfies the material balance Eq. (2)
and Eq. (11) for the water, and is evaluated by integrating
Eq. (15). Writing Fick’s law as

f = −Dsθw
∂Cs

∂z
(16)

with Ds (m2 s−1) the diffusion coefficient of the solute in
the pore water. Substitution of Eq. (16) in Eq. (14) again
leads to a non-linear diffusion equation(
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2.3. Non-reactive solute/water movement in swelling
systems

Simultaneous transfer of non-reactive solute and water in
a swelling system permits a similar analysis. The material
balance equations are Eq. (4) which describes the flow of
water in relation to the (moving) solid (m-space),(
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which defines the material balance of solute inm-space.
Eq. (18) derives from Eq. (12) noting that, on the left hand
side,Csθw=θcϑCs, and thatFs on the right hand side can be
expanded using Eq. (13) and then Eq. (3). Differentiation,
the elimination of two terms using Eq. (1), and the use of
Eq. (6) then yield Eq. (18).In Eq. (18),Fs(m) is the flux of
solute relative to, and with, the water moving inm-space. It
is given by

Fs(m) = f + Cwu (19)

Again, f is defined by Fick’s law andu is the Darcy flux of
water and, as for the first two cases, combination of Eqs. (4),
(18) and (19) yields(
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)
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)
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with the material coordinate,p (m,t) (m) defined by
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(
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)
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)
dt = ϑ dm− udt (21)

Eq. (20) appears not to have been previously formulated.
It presents the material balance of the solute in a space-like
coordinate that satisfies the material balance equation of the
moving solution. The transfer of the solution, in turn, is
formally related tom-space through Eq. (21) and thence to
(physical)z-space through Eq. (5). Material balance of all
components is thus respected.

Substitution of Fick’s law in Eq. (18) gives rise to the
diffusion equation(
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3. Illustrative examples

We illustrate development of the approach in terms of
initial and boundary conditions defined by:

Cs = Cs(i), θw = θw(i), z > 0, t = 0
Cs = Cs(0), θw = θw(0), z = 0, t > 0
Cs = Cs(i), θw = θw(i), z → ∞, t > 0.

(23)

These conditions would apply, for example, to a process
of constant pressure filtration in a semi-infinite column, ini-
tiated att = 0, in which water but not solid escapes through
the filter membrane atx= 0. The conditions onCs presume
that at the filter membrane a step change in solution con-
centration exists. These conditions were realized, for exam-
ple, in the experiments described in [10]. They also apply to
absorption of solution by a relatively dry non-swelling soil
[15].

3.1. Water flow in swelling systems

A convenient integration path for Eq. (5) for these condi-
tions is:

m =
∫ z

0
θctdz−

∫ t

0
Fcz=0dt (24)

But Fc=0 atz=0, som is the cumulative volume of solid,
per unit area of cross section, measured away from the filter
membrane.m then replacesz in Eq. (23) and the Boltzmann
substitutionM=mt−1/2 eliminates explicit appearance ofm
andt from the experimental conditionson the water, which
become

ϑ = ϑi,
(
θw = θw(i)

)
, M → ∞

ϑ = ϑ0,
(
θw = θw(0)

)
, M = 0

(25)

in consistent dimensions, and Eq. (10) becomes the ordinary
differential equation
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with
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Fig. 1. Water content profiles observed during constant pressure filtration
of Wyoming bentonite and expressed (as they were originally derived)
in material space (a). Fig. 1b shows the relation between the material
(M) and physical (Z) coordinates derived from the data of Fig. 1a and
Fig. 1c shows the volume fraction of the water expressed as a function
of Z=zt−1/2. Further detail is provided in the text.

andZ=zt−1/2. If Eq. (26) is valid and conditions Eq. (25)
are realized, thenϑ(M) will be unique.

Fig. 1 shows water content profiles observed during con-
stant pressure filtration of Wyoming bentonite [16]. These
experiments explored the effects of solution concentration
and temperature on filtration behaviour and the permeability
and effective stress characteristics of this clay. The filtering
clay columns were destructively sampled a range of elapsed
times. Fig. 1a showsϑ(M), Fig. 1b showsZ(M) and Fig. 1c
showsθw(Z).

In this example, the initial experimental data were de-
termined inm-space. This is because it is easier and more
accurate to measure weights of water and oven dry solid
during fine serial sectioning, which often involves samples
less than 1 mm thick, than it is to measure physical distance
and volume fractions inz-space. Thus Fig. 1b is derived,
for this saturated system, from Fig. 1a using (cf. Eq. (27))

Z =
∫ M

0
(1 + ϑ)−1 dM (28)

while Fig. 1c derives from Fig. 1a and Fig. 1b and noting
that θw=ϑ /(1+ϑ).

The m-coordinate has the benefit that the mathematics
in m-space is much simplified when compared with devel-
opment inz-space [17,18] because we deal with a diffu-
sion equation rather than the integro-differential equation
required explicitly to account for drift of the particles.

Finally, because the analysis is strain independent, it ob-
viates errors in interpretation of data. For example, the in-
tegrals under the curves in Fig. 1a and Fig. 1c are unequal
despite the fact that in both coordinate systems, similarity
is preserved. Specifically, the cumulative outflowS(ϑ i ,ϑ0)
(m s−1/2) is given [19] by

S (ϑi, ϑ0) =
∫ ϑi

ϑ0

Mdϑ = θ−1
c

∫ θwi

θw0

Zdθw (29)

Thus, an error proportional toθc arises in the estimation
of the flux of water if the movement of the solid in physical
space is ignored and the cumulative flow is simply based on
the integral inz-space. That possibility for error does not
arise in material space.

3.2. Non-reactive solute flow in non-swelling systems

We illustrate evaluation of thej-coordinate for the case of
absorption of solute by an initially relatively dry soil from
a solution source at constant water potential. Integration of
Eq. (15) then yields

j =
∫ z

0
θwtdz−

∫ t

0
Fwx=0dt (30)

with the second term on the right, the cumulative amount
of water that crossesz= 0 [7]. j = 0 is a notional moving
interface between invading water and that originally present,
were displacement of the latter by the former, perfect. In
terms of the initial and boundary conditions Eq. (23),j=0
identifies a step change inCs. Thus

Cs = Cs(i), j > 0, t = 0
Cs = Cs(0), j < 0, t = 0, and∫ Cs(0)

Cs(i)

jdCs = 0, t > 0
(31)

and we presume the system to be effectively doubly
semi-infinite with preservation of the total amount of solute
reflected in the integral in Eq. (31).

We note again thatZ eliminates explicit appearance of
z and t in the flow equation for the water and conditions
(Eq. (23)) and we use the reduced coordinates,Z and
J=jt−1/2. In this system, Eq. (17) and Eq. (31) become
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and

Cs = Cs(i), J → +∞
Cs = Cs(0) J → −∞, and∫ Cs(0)

Cs(i)

JdCs = 0
(33)
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Fig. 2. Water and salt concentration profiles observed during absorption
of solution by an initially relatively dry soil. Fig. 2a shows the water
content and the way it scales according toZ for experiments terminated at
different times. Fig. 2b shows the relation between the (moving) material
J-coordinate, and the physicalZ-coordinates. Fig. 2c shows the normalised
solution concentrations and the way the solute front in these experiments
corresponds to the piston front whereJ=0.

with

J =
∫ Z

0
θwdZ − S

(
θw(i), θw(0)

)
(34)

while the water flow remains governed by Eq. (25) and
Eq. (26).

Fig. 2a shows the distribution of water during absorption
into a relatively dry non-swelling soil and illustrates the use
of the Boltzmann substitution. Fig. 2b shows the relation
between theZ andJ. J= 0 corresponds to this piston front (in
Z-space) and solute disperses about it. Fig. 2c illustrates this
phenomenon inZ-space although, strictly speaking, the units
of concentration and space in this figure are inconsistent
becauseC, in Z-space, should be expressed per unit volume
of the system, rather than per unit volume of solution as is
appropriate inJ-space.

Again, the mathematics are much simplified, particularly
when unsteady water flow is considered and material balance
implicitly retained if the correct units are used.

3.3. Non-reactive solute/water and clay movement

This situation might arise, for example, in a process
of constant pressure filtration, initiated att=0, in which

water but not solid escapes through the filter membrane at
x=0. The conditions onCw presume that at the filter mem-
brane a step change in solution concentration exists. These
conditions were realized, for example, in the experiments
described in [10]. It transpires that the Boltzmann substitu-
tion again permits use of the reduced coordinatesZ= zt−1/2,
M = mt−1/2 for these conditions, and we may introduce a re-
duced coordinateP= pt−1/2 which eliminatesp andt from
Eq. (22) and Eq. (23) expressed inp-space using Eq. (21).

Eqs. (22) and (23) then become

d

dP

(
Dsθ

2
w

dCs

dP

)
+ P

2

dCs

dP
= 0 (35)

and

Cs = Cs(i), θw = θw(i), P > 0
Cs = Cs(0), θw = θw(0), P = −S (36)

with P defined in terms of the water distribution inM-space
by

P =
∫ M

0
ϑdM − S

(
ϑw(i), ϑw(0)

)
(37)

If Eq. (10) is valid, and Eq. (23) realized and if Eq. (27)
is valid and conditions Eq. (35) and Eq. (36) are realized,
thenCs (P) must be unique. Thus, evolutionary profiles of
water content and solute concentration test the approach
and its assumptions. They also permit estimation ofD(u,ϑ).
Alternatively, if D(u,ϑ) is known, the profiles ofCs(P) can
be calculated for conditions Eq. (28) and Eq. (29).

4. Concluding remarks

Material coordinates are useful to describe 1-dimensional
unsteady flow of water in swelling systems, solute with water
in unsaturated flow in non-swelling systems and solute, wa-
ter and solid in swelling systems. They are formulated in the
same way, they result in essentially the same diffusion-like
flow equation and they permit similar types of solution.
Application of the approach to 2- and 3-dimensional so-
lute/water flow in non-swelling soils is straightforward. Use
of material coordinates to describe water flow in 2- and
3-dimensional systems remains a challenge, however, al-
though the structure of the problem often permits useful
simplification [20].

Illustrations here relate to experimental conditions that
permit use of the Boltzmann substitution. This is not a nec-
essary condition for use of these coordinates [8]; it does
however offer a useful space/time scaling test of the flow
equations and of the realization of the experimental condi-
tions. It also provides a useful basis for measurement, for
example, ofDm(ϑ) [13]. The approach may also be used
in unsaturated swelling systems [20] and where gravity and
overburden effects are significant [21].

While the approach here is illustrative and restricted
to non-reactive solutes, its analogue in unsaturated non-



220 D.E. Smiles / Chemical Engineering Journal 80 (2000) 215–220

swelling soil water flow has been extended to cases where
the solute participates in exchange and sorption reactions
and, while these reactions are often complicated, the mate-
rial coordinate remains useful. Papers [22–26] illustrate ex-
amples of hydrodynamic dispersion and chemical reaction
in rigid systems. The physical consequences of chemical
reaction during solute flow in colloidal systems has yet to
be systematically explored [10,11].
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